PARKINSON'S DISEASE Clinical aspects

Johanna Eerola-Rautio Neurologist, MD PhD

PARKINSONISM

- A <u>clinical</u> syndrome characterized by
 - bradykinesia/hypokinesia (slowness and poverty of movement)
 - tremor
 - rigidity (stiffness)
- Can have many causes
 - Parkinson's disease & other degenerative diseases
 - drug-induced, toxic, metabolic
 - vascular, traumatic, post-infectious, normal pressure hydrocephalus, etc.

PARKINSONIAN SYNDROMES

Parkinsonism versus Parkinson's disease (PD)

Parkinsonisms

Diagnostic Approach to Atypical Parkinsonian Syndromes. McFarland, Nikolaus; MD, PhD

CONTINUUM: Lifelong Learning in Neurology. 22(4, Movement Disorders):1117-1142, August 2016. DOI: 10.1212/CON.00000000000348

History of Parkinson's disease: First description 1817

AN

ESSAY

ON THE

SHAKING PALSY.

JAMES PARKINSON,

LONDON: MENTAD BY PROPERTIES AND AND SERVICE

FOR SHERWOOD, NEELY, AND JONES, PATERNOITER BOW, ESSAY ON THE SHAKING PALSY,

AN

CHAPTER I. DEFINITION-HISTORY-ILLUSTRATIVE CASES.

SHAKING PALSY. (Paralysis Agitans.)

Involuntary tremulous motion, with lessened muscular power, in parts not in action and even when supported; with a propensity to bend the trunk forward, and to pass from a walking to a running pace; the senses and intellects being uninjured.

Epidemiology

- Prevalence in white population 100-180/100000 and incidence 10-15/100000/v
 - In Finland 1992 prev . 166/100000 ja ins. 15/100000/v
 - -In Finland ~15000 PD patients
- increasing prevalence after 50 years of age, 1-1.5% of > 70 y population
- Men > women

PARKINSON'S DISEASE

- Degeneration of substantia nigra
 - causes the motor symptoms
 - apoptosis
 - non-linear rate of cell death
- Initially, remaining cells compensate
- A premotor phase of several years
- Motor symptoms emerge after
 - ~50% of nigral cell loss
 - ~80% of striatal DA loss
- Insidious onset, slow progression

NEUROPATHOLOGY OF PD

- Widespread, not only substantia nigra
 - cerebral cortex
 - multiple brainstem & basal forebrain nuclei
 - dorsal motor of vagus, raphe, ceruleus, pedunculopontine, Meynert, olfactory
 - hypothalamus
 - spinal cord (intermediolateral cell horn)
 - peripheral autonomic nervous system
 - paraspinal ganglia, cardiac plexus, sacral nuclei
 - visceral (enteric) nervous system
 - \rightarrow also non-motor symptoms

Neuropathology of PD

Clinico-pathological correlations of PD stages

Clinical phasePathologyPreclinicalMedulla oblongata, pontine tegmentum, olfactory bulb, autonomic? (Stages1-2)Early- moderate PDMedulla oblongata, pontine tegmentum, olfactory bulb, autonomic?, substantia nigra (Stages 3-4)Severe PD, PDDMedulla oblongata, pontine tegmentum, olfactory bulb, autonomic, substantia nigra, cortex (Stages 5-6)Simplified from Braak H et al 2003, Probst A et al 2008.PDD= PD with dementia

PD neuropathology

Characteristic: substantia nigra

- macroscopic: depigmentation, paleness
- microscopic: neuronal loss, gliosis, intraneuronal *Lewy bodies* which mainly consist of *a-synuclein*

Normal substantia nigra

Pale substantia nigra of a PD patient

PD - RISK FACTORS

- Age is the most important
- Family/genetic factors
 - affected 1st degree relative: 2.9x (Autere, 2000)
- Gender
 - slightly higher risk in men: 1.2-1.5x
- Suspected environmental risk factors (no consistent evidence)
 - well water use?
 - rural dwelling?
 - mining?
 - herbi-/pesticides?
- Protective environmental factors:
 - coffee
 - smoking cigarettes

Is PD hereditary?

- Small part (10-15 %) have positive family history

- Genetic susceptibility has been shown also in "normal" sporadic PD

Tanner et al 1999:

Twin studies, e.g.:

- similar concordance for MZ and DZ twins but if dg <50 v concordance MZ 1.0 vs. DZ 0.167
- →".. typical PD diagnosed after 50 years has no genetic component"

• **Piccini et al 1999**,

- PET study, concordance 75% in MZ vs 22 % in DZ twins
- ==> significant genetic effect in nigrostriatal dopaminergic dysfunction

MOTOR SYMPTOMS & SIGNS

- Bradykinesia/Hypokinesia
 - slowness/poverty of movement
 - akinesia
- Rigidity
 - increase in muscle tone
 - cogwheel or leadpipe
- Tremor
 - rhythmic, oscillatory motion of a body part
- Postural instability
 - forward bent posture
 - impaired balance
 - later phenomenon

PD

Clinical manifestations

- The patients may complain or present with
 - impairment ("clumsiness") in manual tasks
 - small hand writing (micrographia)
 - masked face & reduced blinking (hypomimia)
 - short-stepped, shuffling gait
 - stooped posture
 - muscle cramps
 - slurred speech with reduced volume (hypophonic dysartria)

Parkinson's disease

more motor manifestations

NON-MOTOR SYMPTOMS IN PD

AUTONOMIC

- postural (orthostatic) hypotension
- constipation, dysphagia
- urinary frequency/urge
- impotence
- hyperhidrosis

MOOD, COGNITION, BEHAVIOR

- depression, apathy, anxiety
- compulsive behavior
- hallucinations, psychosis
- deficits in attention/memory
- dementia (in 30%)

SENSORY

- impaired sense of smell
- pain
- numbness, tingling
- -(visual disturbances?)

SLEEP-WAKE

- excessive daytime sleepiness
- restless legs
- insomnia, sleep fragmentation
- REM sleep behavior disorder
- sleep apnea

Suggested premotor symptom

PD DIAGNOSIS

- History
- Clinical symptoms and signs
- Exclusion of other causes
- Follow-up
- No spesific biomarkers available
- false positives up to 15-25% !

MDS Clinical diagnostic criteria for Parkinson's disease

- PARKINSONISM MUST BE PRESENT
- Bradykinesia AND
- rigidity
- or resting tremor (or both)

MDS clinical criteria for PD Exclusion criteria

- 1) cerebellar signs
- 2) vertical gaze palsy

3) Dg of diagnosis of behavioral variant frontotemporal dementia or primary progressive aphasia within first 5 y of disease

- 4) Parkinsonism restricted to lower limbs > 3 y
- 5) Drug-induced parkinsonism
- 6) Absence of response to levodopa

7) Unequivocal cortical sensory loss, clear limb apraxia or progressive aphasia

- 8) Normal functional neuroimaging of the presynaptic dopaminergic system
- 9) Documentation or expert opinion that other condition causes parkinsonism

MDS clinical criteria for PD Red flags

- 1) Rapid progression of gait impairment requiring regular use of wheelchair within 5 y of onset
- Lack of progression of motor symptoms or signs > 5 y unless stability is related to (increasing) treatment
- 3) Early bulbar dysfunction: severe dysphonia or dysarthria or severe dysphagia within first 5 y
- 4) inspiratory stridor
- 5) severe autonomic failure < 5 y
- 6) recurrent falls < 3 y
- 7) Severe antrocollis or contractures of hand or feet <10 y
- 8) Absence of nonmotor features > 5 y
- 9) otherwise-unexplained pyramidal tract signs
- 10)Bilateral symmetric parkinsonism

MDS clinical criteria for PD Supportive criteria

- 1)clear beneficial response to dopaminergic therapy
- 2)Presence of levodopa-onduced dyskinesi
- 3)rest tremor of a limb
- 4)olfactory loss or cardiac sympathetic denervation on MIBG scintigraphy

MDS Clinical diagnostic criteria for Parkinson's disease

PD DIAGNOSIS - NEUROIMAGING

- Used to exclude other causes for parkinsonism routinely
 - computerized tomography (CT) or
 - magnetic resonance imaging (MRI)
- Functional neuroimaging in problematic cases
 - striatal dopaminergic terminals
 - single photon emission tomography (SPECT)
 - β-CIT binds to pre-synaptic dopamine transporter in the striatum
 - positron emission tomography (PET)
 - 6-[¹⁸F]-dopa is taken up and stored presynaptically

¹⁸FD PET, β -CIT SPECT

Fluorodopa Positron Emission Tomography

PD diagnosis -Imaging

Brain CT or MRI is normal in PD
TO EXLUDE OTHER CAUSES
Examples:

NPH

Multiple system atrophy: Cerebellar and pontine atrophy "Hot cross bun sign"

Haemorrhage in the left SN -> acute onset right-sided hemiparkinsonism

DISEASE COURSE

- progressive, individual rate
- Prognosis prior to levodopa therapy
 - 80% dead or seriously crippled after 10-14 y
 - death rate (mortality): 3x that of healthy
- Prognosis after levodopa therapy
 - changed dramatically
 - levodopa delays disability by several years
 - mortality: roughly equals that of healthy

DISEASE COURSE

Patients with severe disability:	before L-dopa	after L-dopa
	(1967)	(1992)
After 5 years	28%	9%
After 10 years	61%	22%
After 15 years	83%	51%

DRUG THERAPY IN BRIEF

- No therapy proven curative or disease modifying
- Only symptomatic
- <u>Basic principle</u>: enhancement of striatal dopaminergic activity
 - levodopa (DA replacement)
 - most effective, cheap
 - long-term motor complications
 - DA agonists (direct DA-receptor effect)
 - less long-term motor complications
 - less effective, more expensive
 - MAO-B inhibitors (inhibition of DA breakdown)
 - COMT inhibitors (combined with L-dopa) (inhibition of DA breakdown)
 - combinations

LEVODOPA REPLACEMENT

- Levodopa is a prodrug, precursor of DA
- Penetrates the blood-brain barrier
 (DA does not)
- Metabolized to DA within the brain

MOTOR COMPLICATIONS of long-term levodopa therapy

- Occur in
 - 20-50% after 5 y
 - 50-90% after 10 y
- Motor response fluctuations
 - drug effect wears off ("wearing-off")
 - delayed or no drug effect
 - rapid fluctuations of motor state ("on-off")
 - "freezing"
- Involuntary movements, dyskinesia

VIDEO PARKINSON DYSKINESIA

MOTOR COMPLICATIONS Risk factors

- Age of onset
 - young at a higher risk
- Duration & severity of disease
- Duration & dosage of levodopa therapy

 cumulative dosage

Duodenal levodopa

SURGICAL THERAPY IN PD

- Severe and disabling motor symptoms and/or motor response complications
 - not adequately managed by optimal drug therapy
 - patient does not tolerate drug therapy
- What is required?
 - 3D-mapping (*stereotaxis*, stereotactic frame)
 - intraoperative electrophysiologic monitoring
 - intraoperative clinical monitoring (patient fully aware & co-operative)

Surgical therapy of PD

Ablation procedures → deep brain stimulation (DBS)

Choosing the right PD patient for DBS

LIKELY TO BENEFIT

- severe fluctuation of symptoms despite of adequate medication
- troublesome dyskinesias
- levodopa benefit
- cognitively intact patient, not too old

NOT LIKELY TO BENEFIT Uncorrect diagnosis >no benefit from levodopa ➢ high age? Problems with speech or gait Cognitive problems Severe psychiatric symptoms Severe comorbidities Abnormalities in brain imaging (atrophy, white matter degeneration,

signs of (old)basal ggl ischemia)

Stimulation targets

-Subthalamic nucleus (STN)

- * > 90% PD DBS
- * reduces most PD motoric symptoms
- * allows 25-50% levodopa dose reduction
- -Globus pallidus interna (GPi) * reduction in most PD motoric symptoms
- * no medication reduction
- * possibly less depression

-Nucleus ventralis intermedius(Vim)of thalamus* reduction of tremor only

DBS adjustment

) 08/30/2001 D G C
Kinetra 🖂 🗙
Summary
(• 4 B S 1 4
Kinetra on
08/30/2001 Beth Smith (Kinet
Parameters
0,,,,0
Amp (V) 1.45 1.85 PW (μs) 90 120 Rate (pps) 135
Mode Continuous Day Cycling off SoftStart [™] off
-Patient Control:
Amp (V) - Tracking (±0.4) 1.05 - 1.85 1.45 - 2.25
PW (ps) - Custom 90 - 270 90 - 240
Rate (pps) - Tracking (±0) 135 - 135
Clear Counters
Print report
Return to initial setting
NFD ^{nennen} 7428 Beth Smith

INTRODUCING THE ST. JUDE MEDICAL INFINITY[™] DBS SYSTEM

- Directional lead technology
- App-based programming via Bluetooth[®] wireless communication
- Bilateral, independent frequency control
- User-friendly Apple[™] mobile digital devices¹
- Upgradeable technology platform

 \mathbf{z}

DBS

Risks and side effects

- The most serious risks
 - ICH n 1-3% (Pekkonen E, Duodecim 2013, Okun M, NEJM 2012)
 - infection 5 %(Okun NEJM 2012)
- Mild cognitive decline or decline of speech fluency, depression or mania, aggression or suicidal behavior?
- Usually transient and mild, and respond to adjusting stimulation parameters:
 - dysarthria
 - paresthesia
 - diplopia
 - vertigo, balance problems
 - dystonia
- Lead fracture